Статью подготовили специалисты образовательного сервиса Zaochnik.

Угловое ускорение

Содержание:

Система понятий кинематики включает в себя также такую величину как угловое ускорение тела. Дадим ей определение, рассмотрим основные аспекты с использованием примеров.

Основные понятия

Определение 1

Угловое ускорение – величина, характеризующая изменение скорости с течением времени.

Пусть рассматриваемый промежуток времени это: Δt=t1-t, а изменение угловой скорости составит Δω=ω1-ω, тогда числовое значение среднего углового ускорения за тот же интервал времени: ε=ωt=ε. Перейдем к пределу, когда Δt>0, тогда формула углового ускорения будет иметь вид: ε=limt0ωt=dωdt=d2φdt=ω˙=φ¨.

Определение 2

Числовое значение ускорения в заданный момент времени есть первая производная от угловой скорости или вторая производная от угла поворота по времени.

Размерность углового ускорения 1T2 (т.е. 1время2). Укажем также, в чем измеряется угловое ускорение: за единицу измерения стандартно принимается рад/с2 или иначе: 1с2(с-2).

Определение 3

Ускоренное вращение тела – это вращение, при котором угловая скорость (ее модуль) возрастает с течением времени.

Определение 4

Замедленное вращение тела – это вращение, при котором угловая скорость (ее модуль) убывает с течением времени.

В общем, довольно просто заметить, что, если ω и ε имеют одинаковые знаки, наблюдается ускоренное вращение, а, когда противоположные знаки – замедленное.

Основные понятия

Рисунок 1. Вектор углового ускорения

Если мы представим угловое ускорение как вектор ε=dωdt, имеющий направление вдоль оси вращения, то в случае ускоренного вращения ε и ω совпадут по направлениям (левая часть
рисунка 1) и будут противоположны по направлениям в случае замедленного вращения (правая часть
рисунка 1).

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Закон равнопеременного вращения

Определение 5

Равнопеременное вращение – вращение, при котором угловое ускорение во все время движения является постоянным (ε=const).

Выведем формульно закон равнопеременного вращения. Пусть в начальный момент времени t0 угол вращения равен ϕ=ϕ0; угловая скорость - ω=ω0 (т.е. ω0 является начальной угловой скоростью).

Выражение ε=dωdt=ω˙=φ¨ дает нам возможность сделать запись: dω=εdt. Проинтегрируем левую часть крайней записи в пределах от ω0 до ω, а правую – в пределах от 0 до t, тогда:

ω=ω0+εt, dφ=ω0dt+εtdt.

Проинтегрируем вторично и получим формулу, выражающую закон равнопеременного вращения:

Определение 6

Закон равнопеременного вращения: φ=φ0+ωt+εt22.

Вращение является равноускоренным, когда ω и ε имеют одинаковые знаки.

Вращение является равнозамедленным, когда ω и ε противоположны по знаку.

Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R, тогда: αr=εR. Нормальное ускорение имеет также связь с угловым: an=ω2R. Учтем это выражение и для полного ускорения получим: a=ar2+an2=Rε2+ω4 Для равнопеременного движения: ω=εt; an=ω2R=ε2t2R и a=Rε2+ε4t4=Rε1+ε2t4.

Практические примеры

Пример 1

На рисунке 2 заданы различные типы вращения гироскопа (волчка). С учетом соответствующих подписей необходимо указать, какой рисунок верно демонстрирует направление углового ускорения.

Практические примеры

Рисунок 2

Решение

Правило буравчика (правого винта) связывает направление вращения и псевдовектор угловой скорости. Рисунки 2.1. и 2.3. показывают направление псевдовектора вверх, а рисунки 2.2. и 2.4. – вниз.

Когда угловая скорость возрастает, ее приращение и вектор ускорения совпадут с вектором угловой скорости (рисунки 2.1. и 2.4.). Когда угловая скорость будет уменьшаться, ее приращение и вектор ускорения окажутся противоположно направлены вектору угловой скорости (рисунки 2.2. и 2.3.). Таким образом, все рисунки демонстрируют верное направление углового ускорения.

Пример 2

Пусть задана некоторая материальная точка, совершающая движение по окружности с радиусом R. При этом выражение ϕ=αt3 отражает зависимость угла поворота от времени. Необходимо найти полное ускорение заданной точки как функцию времени.

Решение

Запишем выражения для угловой скорости и углового ускорения заданной точки:

ω=dφdt=3αt2; ε=6αt.

Полное ускорение запишем как:

a=ar2+an2=Rε2+ω4=R36a2t2+81a4t8=3atR4+9a2t6.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Конспект урока

    • Вид работы:

      Творческая работа

    • Выполнена:

      24 января 2017 г.

    • Стоимость:

      1 500 руб

    Заказать такую же работу
  • Физика

    Выполнить тест в системе росдистант по физике по темам

    • Вид работы:

      Online помощь

    • Выполнена:

      22 мая 2017 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Автоматизация процедуры определения коэффициента теплопроводности на базе компьютерного моделирования теплопер

    • Вид работы:

      Курсовая работа

    • Выполнена:

      15 ноября 2016 г.

    • Стоимость:

      900 руб

    Заказать такую же работу
  • Физика

    Реферат законы физики в электроэнергетике. Заказ: 842318

    • Вид работы:

      Реферат

    • Выполнена:

      20 октября 2017 г.

    • Стоимость:

      400 руб

    Заказать такую же работу
  • Физика

    Равновесие сил гимнаст на канате

    • Вид работы:

      Реферат

    • Выполнена:

      21 ноября 2016 г.

    • Стоимость:

      400 руб

    Заказать такую же работу
  • Физика

    Единой всероссийской спортивной классификации

    • Вид работы:

      Реферат

    • Выполнена:

      2 июня 2016 г.

    • Стоимость:

      400 руб

    Заказать такую же работу
  • Не получается написать работу самому?

    Доверь это кандидату наук!