Статью подготовили специалисты образовательного сервиса Zaochnik.

Произведение синусов и косинусов: формулы, примеры

Содержание:

В данной статье рассмотрены формулы произведения синусов, косинусов, а также формулы произведения синуса на косинус. Допустим, есть необходимость вычислить произведение синусов или косинусов углов α и β. Формулы произведения позволяют перейти от произведения к сумме или разности синусов и косинусов углов α+β и α-β.

Приведем формулы произведения синуса на синус, косинуса на косинус и синуса на косинус.

Формулы произведения. Список

Приведем формулировки, а затем и сами формулы.

  1. Произведение синусов углов α и β равно полуразности косинуса угла α-β и косинуса угла α+β.
  2. Произведение косинусов углов α и β равно полусумме косинуса угла α-β и косинуса угла α+β.
  3. Произведение синуса угла α на косинус угла β равно полусумме синуса угла α-β и синуса угла α+β.
Формулы произведения

Для любых α и β справедливы формулы

  • sin α·sin β=12cosα-β-cosα+β;
  • cos α·cos β=12cosα-β+cosα+β;
  • sin α·cos β=12sinα-β+sinα+β.

Вывод формул

Вывод описанных выше формул проводится с помощью формул сложения и на основе свойства равенства. Согласно этому свойству, если левую и правую части верного равенства сложить соответственно с левой и правой частями другого верного равенста, то в результате получится еще одно верное равенство. Покажем вывод формул произведения.

Сначала запишем формулы косинуса суммы и косинуса разности:

cosα+β=cos α·cos β-sin α·sin βcosα-β=cos α·cos β+sin α·sin β

Сложим эти равенства и получим:

cosα+β+cosα-β=cos α·cos β-sin α·sin β+cos α·cos β+sin α·sin βcosα+β+cosα-β=2·cos α·cos β

Отсюда

cos α·cos β=12cosα+β+cosα-β

Формула произведения косинусов доказана.

Перепишем формулу косинуса суммы следующим образом:

-cos(α+β)=-cos α·cosβ+sin α·sinβ

Добавим к равенству формулу cosα-β=cos α·cos β+sin α·sinβ.

Получим:

-cos(α+β)+cosα-β=-cos α·cosβ+sin α·sinβ+cos α·cos β+sin α·sinβ-cos(α+β)+cosα-β=2·sin α·sinβsin α·sinβ=12(cosα-β-cos(α+β))

Таким образом, выведена формула произведения синусов.

Теперь возьмем формулу синуса суммы, формулу синуса разности, и сложим их левые и правые части

sinα+β=sin α·cos β+cos α·sin βsinα-β=sin α·cos β-cos α·sin βsinα+β+sinα-β=sin α·cos β+cos α·sin β+sin α·cos β-cos α·sin βsinα+β+sinα-β=2sin α·cos βsin α·cos β=12(sinα+β+sinα-β)

Формула произведения синуса на косинус выведена.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Примеры использования

Приведем примеры использования формул произведения синусов, косинусов и синусов на косинус при решении задач. 

Пусть α=60°, β=30°. Возьмем формулу произведения синусов и подставим в нее конкретные значения.

sin α·sin β=12(cosα-β-cosα+β)sin 60°·sin 30° =12(cos60°-30°-cos60°+30°)sin 60°·sin 30°=12(cos30°-cos90°)sin 60°·sin 30°=12(32-0)=34

Теперь вычислим значение выражения, обратившись к таблице основных значений тригонометрических функций.

sin60°·sin30°=32·12=34.

 Таким образом, мы проверили формулу на практике и убедились, что формула справедлива.

Пример. Формулы произведения

Нужно sin 75° умножить на cos 15° и вычислить точное  значение произведения.

Мы не располагаем точными значениями синуса и косинуса данных углов, однако можем вычислить точное значение произведения sin 75°·cos 15° c помощью формулы произведения синуса на косинус.

sin 75°·cos 15°=12sin(75°-15°+sin(75°+15°))sin 75°·cos 15°=12sin60°+sin90°=1232+1=3+24

Также формулы произведения используются преобразования тригонометрических выражений.

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!