Информационный баннер

Статью подготовили специалисты образовательного сервиса Zaochnik.

Приведение дробей к новому знаменателю - правило и примеры

Содержание:

В данном материале мы разберем, как правильно приводить дроби к новому знаменателю, что такое дополнительный множитель и как его найти. После этого сформулируем основное правило приведения дробей к новым знаменателям и проиллюстрируем его примерами задач.

Понятие приведения дроби к другому знаменателю

Вспомним основное свойство дроби. Согласно ему, обыкновенная дробь ab (где a и b – любые числа) имеет бесконечное количество дробей, которые равны ей. Такие дроби можно получить, умножив числитель и знаменатель на одинаковое число m (натуральное). Иными словами, все обыкновенные дроби могут быть заменены другими вида a·mb·m. Это и есть приведение исходного значения к дроби с нужным знаменателем.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Привести дробь к другому знаменателю можно, умножив ее числитель и знаменатель на любое натуральное число. Главное условие – множитель должен быть одинаков для обоих частей дроби. В итоге получится дробь, равная исходной.

Проиллюстрируем это примером.

Пример 1

Привести дробь 1125 к новому знаменателю.

Решение 

Возьмем произвольное натуральное число 4 и умножим обе части исходной дроби на него. Считаем: 11·4=44 и 25·4=100. В итоге получилась дробь 44100.

Все подсчеты можно записать в таком виде: 1125=11·425·4=44100  

Выходит, любую дробь можно привести к огромному количеству разных знаменателей. Вместо четверки мы могли бы взять другое натуральное число и получить еще одну дробь, эквивалентную исходной.

Но не любое число может стать знаменателем новой дроби. Так, для ab в знаменателе могут стоять только числа b·m, кратные числу b. Вспомните основные понятия деления – кратные числа и делители. Если число не кратно b, но делителем новой дроби оно быть не может. Поясним нашу мысль примером решения задачи.

Пример 2

Вычислить, возможно ли приведение дроби 59 к знаменателям 54 и 21.

Решение

54 кратно девятке, которая стоит в знаменателе новой дроби (т.е. 54 можно разделить на 9). Значит, такое приведение возможно. А 21 мы разделить на 9 не можем, поэтому такое действие для данной дроби выполнить нельзя.  

Понятие дополнительного множителя

Сформулируем, что такое дополнительный множитель.

Определение 1

Дополнительный множитель представляет собой такое натуральное число, на которое умножают обе части дроби для приведения ее к новому знаменателю.

Т.е. когда мы выполняем это действие с дробью, мы берем для нее дополнительный множитель. Например, для приведения дроби 710 к виду 2130 нам потребуется дополнительный множитель 3.  А получить дробь 1540 из 38 можно с помощью множителя  5.

Соответственно, если мы знаем знаменатель, к которому необходимо привести дробь, то мы можем вычислить для нее и дополнительный множитель. Разберем, как это сделать.

У нас есть дробь ab, которую можно привести к некоторому знаменателю c; вычислим дополнительный множитель m. Нам надо произвести умножение знаменателя исходной дроби на m. У нас получится b·m, а по условию задачи b·m= c. Вспомним, как связаны между собой умножение и деление. Эта связь подскажет нам следующий вывод: дополнительный множитель есть не что иное, как частное от деления c на b, иначе говоря, m=c:b.

Таким образом, для нахождения дополнительного множителя нам нужно разделить требуемый знаменатель на исходный.

Пример 3

Найдите дополнительный множитель, с помощью которого дробь 174 была приведена к знаменателю 124.

Решение

Используя правило выше, мы просто разделим 124 на знаменатель первоначальной дроби – четверку.

Считаем: 124:4=31

Выполнять расчеты такого типа часто требуется при приведении дробей к общему знаменателю.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Правило приведения дробей к указанному знаменателю

Перейдем к определению основного правила, с помощью которого можно привести дроби к указанному знаменателю. Итак,

Определение 2

Для приведения дроби к указанному знаменателю нужно:

  1. определить дополнительный множитель;
  2. умножить на него и числитель, и знаменатель исходной дроби.

Как применить это правило на практике? Приведем пример решения задачи.

Пример 4

Выполните приведение дроби 716 к знаменателю 336.

Решение

Начнем с вычисления дополнительного множителя. Разделим: 336:16=21.

Полученный ответ умножаем на обе части исходной дроби: 716=7·2116·21=147336. Так мы привели исходную дробь к нужному знаменателю 336.

Ответ: 716=147336.

Навигация по статьям

Выполненные работы по предмету «Высшая математика»
  • Высшая математика

    Несколько тестов и ИДЗ по Математике 1.4 ТПУ (заочник)

    • Вид работы:

      Дистанционный экзамен

    • Выполнена:

      21 января 2018 г. дней

    • Стоимость:

      1 200,0 руб

    Заказать такую же работу
  • Сопротивление материалов

    Строительная механика

    • Вид работы:

      Контрольная работа

    • Выполнена:

      23 февраля 2018 г. дней

    • Стоимость:

      510,0 руб

    Заказать такую же работу
  • Математический анализ

    Задачи по матанализу

    • Вид работы:

      Контрольная работа

    • Выполнена:

      21 января 2018 г. дней

    • Стоимость:

      515,0 руб

    Заказать такую же работу
  • Электроснабжение

    Электроснабжение с основами электротехники

    • Вид работы:

      Контрольная работа

    • Выполнена:

      22 февраля 2018 г. дней

    • Стоимость:

      580,0 руб

    Заказать такую же работу
  • Сопротивление материалов

    Задача по предмету "Прикладная теория колебаний"

    • Вид работы:

      Решение задач

    • Выполнена:

      22 января 2018 г. дней

    • Стоимость:

      409,5 руб

    Заказать такую же работу
  • C#

    Задачи по алгоритмам

    • Вид работы:

      Билеты к экзаменам

    • Выполнена:

      26 февраля 2018 г. дней

    • Стоимость:

      120,0 руб

    Заказать такую же работу
  • Не получается написать работу самому?

    Доверь это кандидату наук!