Статью подготовили специалисты образовательного сервиса Zaochnik.

Вычитание десятичных дробей: правила, примеры, решения

Содержание:

Изучаем другие действия, которые можно совершать с десятичными дробями. В этом материале мы узнаем, как правильно подсчитать разность десятичных дробей. Отдельно разберем правила для конечных и бесконечных дробей (как периодических, так и непериодических), а также посмотрим, как считать разность дробей столбиком. Во второй части мы объясним, как вычесть десятичную дробь из натурального числа, обыкновенной дроби, смешанного числа.

Отметим заранее, что в этой статье рассмотрены только случаи, когда меньшая дробь вычитается из большей, т.е. результат этого действия положителен; другие случаи относятся к нахождению разности рациональных и действительных чисел и должны быть объяснены отдельно.

Основные правила вычитания десятичных дробей

Процесс вычисления как конечных, так и бесконечных периодических десятичных дробей можно свести к нахождению разности дробей обыкновенных. Раньше мы говорили о том, что десятичные дроби можно записывать в виде обыкновенных дробей. Исходя из этого правила, разберем несколько примеров нахождения разности.

Пример 1

Найдите разность 3,7-0,31.

Решение 

Переписываем десятичные дроби в виде обыкновенных: 3,7=3710 и 0,31=31100.

Что делать потом, мы уже изучали. Мы получили ответ, который переводим обратно в десятичную дробь: 339100=3,39.

Подсчеты, связанные с десятичными дробями, удобно производить столбиком. Как же пользоваться этим методом? Покажем, решив задачу.

Пример 2

Вычислите разность между периодической дробью 0, (4) и периодической десятичной дробью 0,41(6).

Решение

 Переведем записи периодических дробей в обыкновенные и подсчитаем.

0,4(4)=0,4+0,004+...=0,41-0,1=0,40,9=49.0,41(6)=0,41+(0,006+0,0006+...)=41100+0,0060,9==41100+6900=41100+1150=123300+2300=125300=512

Итого: 0,(4)-0,41(6)=49-512=1636-1536=136  

Если нужно, ответ мы можем представить в виде десятичной дроби: Основные правила вычитания десятичных дробей

Ответ: 0,(4) 0,41(6) =0,02(7)

Разберем далее, как найти разность, если у нас в условиях стоят бесконечные непериодические дроби. Такой случай также можно свести к нахождению разности конечных десятичных дробей, для чего понадобится округлить бесконечные дроби до определенного разряда (обычно самого меньшего из возможных).

Пример 3

Найдите разность 2, 77369-0,52.

Решение

Вторая дробь в условии – конечная, а первая – бесконечная непериодическая. Мы можем округлить ее до четырех знаков после запятой: 2,773692,7737. После этого можно выполнять вычитание: 2,773690,522,77370,52.

Ответ: 2,2537

Как считать разность десятичных дробей столбиком

Вычитание столбиком – быстрый и наглядный способ узнать разность конечных десятичных дробей. Процесс подсчета очень схож с аналогичным для натуральных чисел.

Определение 1

Чтобы подсчитать разность десятичных дробей столбиком, необходимо:

  1. если в указанных десятичных дробях отличается количество знаков после запятой, уравняем его. Для этого допишем к нужной дроби нули;
  2. запишем вычитаемую дробь под уменьшаемой, разместив значения разрядов строго друг под другом, а запятую под запятой;
  3. выполним подсчет столбиком так же, как мы это делаем для натуральных чисел, запятую при этом игнорируем;
  4. в ответе отделим нужное количество чисел запятой так, чтобы она располагалась на том же месте. 

Разберем конкретный пример использования этого метода на практике.

Пример 4

Найдите разность 4 452,294-10,30501.

Решение 

Для начала выполним первый шаг – уравняем количество десятичных знаков. Допишем два нуля в первую дробь и получим дробь вида 4 452,29400, значение которой идентично исходной.

Запишем получившиеся числа друг под другом в нужном порядке, чтобы получился столбик: Как считать разность десятичных дробей столбиком

Считаем как обычно, игнорируя запятые: Как считать разность десятичных дробей столбиком

В получившемся ответе поставим запятую в нужном месте: Как считать разность десятичных дробей столбиком

Подсчеты окончены.

Наш результат : 4 452,29410,30501=4 441,98899.

Как вычесть натуральное число из десятичной дроби и наоборот

Найти разность между конечной десятичной дробью и натуральным числом легче всего описанным выше способом – столбиком. Для этого число, из которого мы вычитаем, необходимо записать в виде десятичной дроби, в дробной части которой стоят нули.

Пример 5

Вычислите 15-7,32.

Запишем уменьшаемое число 15 в виде дроби 15,00, поскольку дробь, которую нам нужно вычесть, имеет два знака после запятой. Далее выполняем подсчет столбиком, как обычно: Как вычесть натуральное число из десятичной дроби и наоборот

Таким образом, 157,32=7,68.

Если из натурального числа нам нужно вычесть бесконечную периодическую дробь, то мы опять же сводим эту задачу к аналогичному вычислению. Заменяем периодическую десятичную дробь на обыкновенную.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Пример 6

Вычислите разность 1-0, (6).

Решение

Указанной в условии периодической десятичной дроби соответствует обычная 23.

Считаем: 10,(6)=123=13.

Полученный ответ можно перевести в периодическую дробь 0,(3).

Если данная в условии дробь непериодическая, поступаем так же, предварительно округлив ее до нужного разряда.

Пример 7

Отнимите 4,274 от 5.

Решение 

Указанную бесконечную дробь мы округлим до сотых и получим 4,2744,27.

После этого вычисляем 54,27454,27.

Преобразуем 5 в 5,00 и запишем столбик: Как вычесть натуральное число из десятичной дроби и наоборот

В итоге 54,2740,73

Если перед нами стоит обратная задача – вычесть натуральное число из десятичной дроби, то мы выполняем вычитание из целой части дроби, а дробную часть не трогаем совсем. Мы поступаем так и с конечными, и с бесконечными дробями.

Пример 8

Найдите разность 37,505  17.

Решение

Отделяем от дроби целую часть 37 и вычитаем требуемое число из нее. Получаем 37,50517=20,505.  

Как вычесть десятичную дробь из смешанного числа или обыкновенной дроби и наоборот

Эту задачу также необходимо свести к вычитанию обыкновенных дробей – как в случае со смешанными числами, так и с десятичными дробями.

Пример 9

Вычислите разность 0,25-45.

Решение

Представим 0,25 в виде обыкновенной дроби – 0,25=25100=14.

Теперь нам нужно найти разность между 14и 45.

Считаем: 450,25=4514=1620520=1120.

Запишем ответ в виде десятичной записи: 0,55

Если в условии стоит смешанное число, из которого надо вычесть конечную или периодическую десятичную дробь, то поступаем аналогично.

Пример 10

Условие: отнимите 0,(18) от 8411.

Решение

Перепишем периодическую дробь в виде обыкновенной. 0,(18)=0,18+0,0018+0,000018+...=0,181-0,01=0,180,99=1899=211

Получается, что 8411-0,(18)=8411-211=8211.

В виде десятичной дроби ответ можно записать как 8,(18)

Таким же образом мы действуем, когда вычитаем смешанное число или обыкновенную дробь из конечной или периодической дроби.

Пример 11

Подсчитайте 940-0,03.

Решение 

Заменяем дробь 0,03 на обыкновенную 3100.

У нас получается, что: 9400,03=9403100=9040012400=78400=39200

Ответ можно оставить так или преобразовать в десятичную дробь 0,195

Если нам требуется выполнять вычитание с участием бесконечных непериодических дробей, то нам нужно будет свести их к конечным. Со смешанными числами поступаем аналогично. Для этого запишем обыкновенную дробь или смешанное число в виде десятичной дроби и округлим вычитаемую дробь до определенного разряда. Проиллюстрируем нашу мысль примером:

Пример 12

Отнимите 4,38475603. из 1027.

Решение

Преобразуем смешанное число в неправильную дробь.

 

1027=10·7+27=727

Далее эту дробь запишем в десятичном виде и получим 10, (285714).

В итоге 1027-4,38475603...=10,(285714)-4,38475603...

Теперь округлим вычитаемые числа до седьмого знака: 10, (285714) =10,28571428571410,2857143 и  4,384756034,3847560 

Тогда 10, (285714) 4,3847560310,28571434,3847560.

Единственное, что осталось сделать – вычесть одну конечную десятичную дробь из другой. Выполним подсчет столбиком: Как вычесть десятичную дробь из смешанного числа или обыкновенной дроби и наоборот

Ответ: 1027-4,38475603...5,9009583 

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!