Информационный баннер

Статью подготовили специалисты образовательного сервиса Zaochnik.

Схема Горнера

Содержание:

В этой статье мы расскажем об удобной схеме решения примеров на деление многочленов. Если нам нужно вычислить коэффициент частного Pn(x)=anan+an-1xn-1+...+a1x+a0 и остаток от деления многочлена на линейный двучлен x-s, то удобно будет воспользоваться схемой (методом) Горнера.

Она заключается в создании особой таблицы и занесении в нее исходных данных:

si коэффициенты многочленов
  an an-1 an-2 ... a0
s an=bn an-1+bn·s=bn-1 an-2+bn-1·s=bn-2 ... a0+b1·s=b0

Числа bn, bn-1, bn-2,..., b1 и будут нужными нам коэффициентами от деления Pn(x)=anan+an-1xn-1+...+a1x+a0 на x-s. Остаток обозначен здесь как b0. Иначе можно записать решение так:

Схема Горнера

Теперь покажем , как именно применять эту схему на практике.

Пример 1

Условие: разделите многочлен 2x4-3x3-x2+4x+13 на линейный двучлен х-1, используя схему Горнера.

Решение

Заполним таблицу. У нас есть s, равный единице, и коэффициенты a4=2, a3=-3, a2=-1, a1=4, a0=13.

si коэффициенты многочленов
  a4=2 a3=-3 a2=1 a1=4 a0=13
s=1 a4=2=b4 a3+b4·s==-3+2·1==-1=b3 a2+b3·s==-1+(-1)·1==-2=b2 a1+b2·s=4+(-2)·1==2=b1 a0+b1·s==13+2·1==15=b0

Ответ: получили частное, равное b4x3+b3x2+b2x+b1=2x3-x2-2x+2 , и остаток b0=15.

Во второй задаче мы обойдемся без подробных комментариев.

Пример 2

Условие: определите, можно ли разделить многочлен 2x3-11x2+12x+9 на двучлен x+12 без остатка. Вычислите частное.

Решение

Заполним таблицу согласно схеме Горнера.

si коэффициенты многочленов
  2 -11 12 9
-12 2 -11+2·-12=-12 12+-12·-12=18 9+18·-12=0

В последней ячейке мы видим нулевой остаток, следовательно, разделить исходный многочлен на двучлен можно.

Ответ: частное будет представлять из себя многочлен 2x2-12x+18.

Если b0=0, то можно говорить о делимости многочлена Pn(x)=anan+an-1xn-1+...+a1x+a0 на двучлен x-s, и мы имеем корень исходного многочлена, равный s. Используя следствие из теоремы Безу, можем представить этот многочлен в виде произведения:

Pn(x)=anan+an-1xn-1+...+a1x+a0==x-s(bnxn+1+bn-1xn-2+...+b1)

Благодаря этому схема Горнера хорошо подходит для тех случаев, когда нужно отыскать целые корни уравнений высших степеней, имеющих целые коэффициенты, или же разложить многочлен на простые множители.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Пример 3

Условие: решите уравнение x3-7x-6=0. Разложите многочлен слева на отдельные множители.

Решение

Мы знаем, что целые корни уравнения (если они есть) нужно искать среди делителей свободного члена. Запишем их отдельно 1, -1, 2, -2, 3, -3, 6, -6 и проверим, используя схему Горнера.

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12

Из данных таблицы видно, что единица не будет входить в число корней данного уравнения.

Дополним таблицу еще одним возможным корнем.

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12
-1 1 0+1·(-1)=-1 -7+-1·-1=-6 -6+(-6)·(-1)=0

А вот -1 подходит, значит, мы можем представить исходный многочлен как x3-7x-6=(x+1)(x2-x-6).

Проверяем делители дальше. Начнем с -1, поскольку возможно повторение корней, но в качестве коэффициентов будем брать значения последней строки:

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12
-1 1 0+1·(-1)=-1 -7+-1·-1=-6 -6+(-6)·(-1)=0
-1 1 -1+1·-1=-2 -6+-2·-1=-4  

Из этого следует, что -1 не будет кратным (повторяющимся) корнем. Берем следующий вариант и вычисляем:

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12
-1 1 0+1·(-1)=-1 -7+-1·-1=-6 -6+(-6)·(-1)=0
-1 1 -1+1·-1=-2 -6+-2·-1=-4  
2 1 -1+1·2=1 -6+1·2=-4  

Число 2 не входит в число корней уравнения. Дополним таблицу Горнера для х=-2:

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12
-1 1 0+1·(-1)=-1 -7+-1·-1=-6 -6+(-6)·(-1)=0
-1 1 -1+1·-1=-2 -6+-2·-1=-4  
2 1 -1+1·2=1 -6+1·2=-4  
-2 1 -1+1·-2=-3 -6+-3·-2=0  

Минус два будет корнем исходного уравнения. Мы можем записать многочлен так:

x3-7x-6=(x+1)(x2-x-6)==(x+1)(x+2)(x-3)

Третий и последний корень уравнения будет равен трем. Закончим заполнение таблицы, взяв значения последней полученной строки в качестве коэффициентов:

xi коэффициенты многочленов
  a3=1 a2=0 a1=-7 a0=-6
1 1 0+1·1=1 -7+1·1=-6 -6+-6·1=-12
-1 1 0+1·(-1)=-1 -7+-1·-1=-6 -6+(-6)·(-1)=0
-1 1 -1+1·-1=-2 -6+-2·-1=-4  
2 1 -1+1·2=1 -6+1·2=-4  
-2 1 -1+1·-2=-3 -6+-3·-2=0  
3 1 -3+1·3=0    

Из этого можно сделать вывод, что последняя полученная таблица, заполненная по методу Горнера, и будет решением нашего примера. Эту задачу можно было решить и делением многочлена на линейный двучлен столбиком, однако показанная здесь схема нагляднее и проще.

Ответ:  х=-1, х=-2, х=3, x3-7x-6=(x+1)(x+2)(x-3).

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!