Специальное предложение

Статью подготовили специалисты образовательного сервиса Zaochnik.

Линейная зависимость системы векторов. Коллинеарные векторы

Содержание:

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.

Коллинеарные векторы

Определение 1

Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Коллинеарные векторы

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1. Векторы a и b коллинеарны при наличии такого числа λ, что a=λb;
  • условие 2. Векторы a и b коллинеарны при равном отношении координат: 

a=(a1; a2), b=(b1; b2)aba1b1=a2b2

  • условие 3. Векторы aи b коллинеарны при условии равенства векторного произведения и нулевого вектора:

aba, b=0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а=(1; 3) и b=(2; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

12=-31

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответa | | b

Пример 2

Какое значение m вектора a=(1; 2) и b=(-1; m)  необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

1-1=2m

Отсюда видно, что m=-2.

Ответ: m=-2.

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
 

Доказательство

Пусть система e1, e2, ..., en является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a1e1+a2e2+...+anen=0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть ak0 k1, 2, ..., n.

Делим обе части равенства на ненулевой коэффициент:

ak-1(ak-1a1)e1+(ak-1ak)ek+...+(ak-1an)en=0

Обозначим:

-ak-1am, где m1, 2,..., k-1, k+1, n

В таком случае:

β1e1+...+βk-1ek-1+βk+1ek+1+...+βnen=0

или ek=(-β1)e1+...+(-βk-1)ek-1+(-βk+1)ek+1+...+(-βn)en

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

ek=γ1e1+...+γk-1ek-1+γk+1ek+1+...+γnen

Переносим вектор ek в правую часть этого равенства:

0=γ1e1+...+γk-1ek-1-ek+γk+1ek+1+...+γnen

Поскольку коэффициент вектора ek равен -10, у нас получается нетривиальное представление нуля системой векторов e1, e2, ..., en, а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора — коллинеарны. Два коллинеарных вектора — линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора — компланарны. (3 компланарных вектора — линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n+1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a=3, 4, 5b=-3, 0, 5c=4, 4, 4d=3, 4, 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы  a=1, 1, 1b=1, 2, 0c=0, -1, 1 на линейную независимость. 

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x1a+x2b+x3c1=0

Записываем векторное уравнение в виде линейного:

x1+x2=0x1+2x2-x3=0x1+x3=0

Решаем эту систему при помощи метода Гаусса:

110|012-1|0101|0~

Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:

~110|01-12-1-1-0|0-01-10-11-0|0-0~110|001-1|00-11|0~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~1-01-10-(-1)|0-001-1|00+0-1+11+(-1)|0+0~010|101-1|0000|0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x1, x2, x3, при которых линейная комбинация a, b, c равняется нулевому вектору. Следовательно, векторы a, b, c являются линейно зависимыми. ​​​​​​​

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!