Статью подготовили специалисты образовательного сервиса Zaochnik.

Вычисление площади фигуры в полярных координатах

Содержание:

В этом разделе мы продолжим разбирать тему вычисления площадей плоских фигур. Рекомендуем тем, кто изучает темы не по порядку, сначала обратиться к статье «Геометрический смысл определенного интеграла» и разобрать способы вычисления площади криволинейной трапеции. Нам понадобится вычислять площади фигур, которые ограничены ограничены линиями y=f(x), x=g(y) в прямоугольной системе координат. А также раздел «Свойства площади фигур», где была разобрана квадрируемость плоских фигур.

Краткий обзор статьи

  • Начнем с определения понятия криволинейного сектора, получим формулу для вычисления его площади. Для этого мы используем понятие определенного интеграла Дарбу.
  • Подробно разберем решения задач с использованием таких кривых как кардиоида, архимедова спираль и лемниската Бернулли.
  • В отдельную подтему мы выделили нахождение площади фигуры, которая представлена как разность двух криволинейных секторов.

Полярная система координат и криволинейный сектор

Определение 1

Точка, расположенная в полярной системе координат, имеет полярный угол φ0 и полярный радиус r00. Полярный угол φ0 отсчитывается от полярной оси по часовой стрелке, а r0 - это расстояние от заданной точки до начала координат.

Полярная система координат и криволинейный сектор

На рисунке мы отметили начало координат (полюс) жирной черной точкой, полярная ось имеет вид луча черного цвета, а красная точка определяется углом φ0=3π4 и расстоянием до полюса r0=4.

Мы можем рассматривать полярную систему координат одновременно с прямоугольной декартовой. Для этого необходимо совместить начала координат обеих систем, а ось абсцисс и полярной осью. 

Задать связь полярных и декартовых координат можно соотношениями r=x2+y2φ=arctgyx, x0 и обратно x=r·cosφy=r·sinφ.

Полярная система координат и криволинейный сектор

Координаты красной точки на чертеже 23; 2. Положение этой точки задается углом φ0=arctg223=π6 и расстоянием r0=232+22=4.

В полярной системе координат равенство φ=α задает луч, который выходит из точки начала координат и составляет угол α с полярной осью. При этом, угол α может быть задан как в радианах, так и в градусах. Полярную ось мы можем задать уравнением вида φ=0. Равенство r=C>0 задает окружность с центром в начале координат, где  - это радиус.

Функция r=p(φ), φα; β определяет некоторую линию в полярных координатах.

Следует учитывать тот факт, что с позиции геометрии функция r=p(φ), φα; β во всех случаях будет неотрицательной. Связано это с тем, что она задает расстояние от начала координат до точки для заданного значения угла φ=φ0α; β. Однако мы будем встречать и отрицательные значенияr=p(φ) функции, что зависит от отношения к данному вопросу конкретных исследователей и преподавателей.

На рисунке мы изобразили несколько примеров линий в полярной системе координат.

Полярная система координат и криволинейный сектор

Дадим определение криволинейному сектору.

Определение 2

Криволинейный сектор представляет собой фигуру, которая ограничена лучами φ=α, φ=β и некоторой линией  r=p(φ)0, непрерывной на участке α; β.

На рисунке мы привели несколько примеров криволинейных секторов.

Полярная система координат и криволинейный сектор

На последнем рисунке мы рассмотрели случай, когда фигура располагается между лучами φ=-π6, φ=π6, которые не являются ее границами.

Площадь криволинейного сектора - вывод формулы

Для вычисления площади криволинейного сектора мы можем вывести формулу. Для этого мы можем использовать формулу площади кругового сектора радиуса R с внутренним углом γ из школьного курса геометрии: Sкругового сектора=γ·R22. Задаем внутренний угол γ в радианах.

Площадь криволинейного сектора - вывод формулы

Разобьем криволинейный сектор на n частей такими лучами 

φ=φ1, φ=φ2,..., φ=φn-1, что α=φ0<φ1<φ2<...<φn-1<β и λ=maxi=1, 2,..., nφi-φi-10 при n+.

Площадь криволинейного сектора - вывод формулы

Учитывая свойства площади фигуры, мы можем представить площадь исходного криволинейного сектора S(G) как сумму площадей секторов S(Gi) на каждом из участков разбиения:

S(G)=i=1nS(Gi)

Обозначим наибольшее и наименьшее значения функции r=p(φ) на i-ом отрезке φi-1; φi, i=1, 2,..., n как Rmini и Rmaxi . На каждом из отрезков построим по два круговых сектора Pi и Qi с максимальным и минимальным радиусами Rmini и Rmaxi соответственно.

Площадь криволинейного сектора - вывод формулы

Фигуры, которые являются объединением круговых секторов Qi, i=1, 2,..., n; Pi, i=1, 2,..., n , обозначим как P и Q соответственно.

Их площади будут равны S(P)=i=1nS(Pi)=i=1n12(Rmini)2·φi-φi-1 и S(Q)=i=1nS(Qi)=i=1n12(Rmaxi)2·φi-φi-1, причем S(P)S(G)S(Q).

Так как функция r=pφ непрерывна на отрезке α; β, то функция 12p2φ будет непрерывна на этом отрезке. Если рассматривать S(P) и S(Q) для этой функции как нижнюю и верхнюю суммы Дарбу, то мы можем прийти к равенству:

limλ0S(P)=limλ0S(Q)=S(G)S(G)=limλ0 i=1n12(Rmini)2·φi-φi-1==limλ0 i=1n12(Rmaxi)·φi-φi-1=12βαp2φdφ

Определение 3

Формула для определения площади криволинейного сектора имеет вид:

S(G)=12βαp2φdφ

Примеры вычисления площади криволинейного сектора

Рассмотрим алгоритмы вычисления площади криволинейного сектора с полярной системе координат на конкретных примерах.

Пример 1

Необходимо вычислить площадь плоской фигуры в полярных координатах, которая ограничена линией r=2sin2φи лучами φ=π6, φ=π3.

Решение

Для начала, изобразим описанную в условии задачи фигуру в полярной системе координат. Функция r=2sin(2φ)положительна и непрерывна на отрезке φπ6, π3.

Примеры вычисления площади криволинейного сектора

Полученная фигура является криволинейным сектором, что позволяет нам применить формулу для нахождения площади этого сектора.

S(G)=12π6π3(2sin(2φ)2dφ=π6π32(sin(2φ)2dφ=π6π32·1-cos4φ2dφ=π6π3(1-cos(4φ))dφ=φ-14sin(4φ)π6π3==π3-14sin4π3-π6-14sin4π6=π6+34

Ответ: S(G)=π6+34

Задача упрощается в тех случаях, когда лучи φ=φ1, φ=φ2, ограничивающие фигуру, заданы. Тогда нам не нужно задумываться о пределах интегрирования при проведении вычисления площади.

Чаще встречаются задачи, где фигуру ограничивает лишь кривая r=p(φ). В этих случаях применить формулу S(G)=12αβp2(φ)dφ сразу не получится. Для начала придется решить неравенство p(φ)0  для нахождения пределов интегрирования. Так мы можем поступить в тех случаях, когда функция r=pφ неотрицательная. В противном случае нам придется ориентироваться  только на область определения и период функции.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена кривой в полярных координатах r=-3·cos3φ.

Решение

Функция определена для всех действительных значений аргумента. Решим неравенство -3·cos3φ0:

-3·cos3φ0cos3φ0cos φ0π2+2πkφ3π2+2πk, kZ

Построим функцию в полярных координатах на отрезке φπ2; 3π2 (при k=0). Для других значений k в силу периодичности косинуса мы будем получать ту же самую кривую.

Примеры вычисления площади криволинейного сектора

Применим формулу для вычисления площади фигуры в полярных координатах. В качестве нижнего и верхнего предела можно брать π2+2πk и 3π2+2πk соответственно для любого целого значения k.

S(G)=12π23π2(-3·cos3φ)dφ=92π23π2cos6φdφ

Для того, чтобы получить ответ, нам необходимо вычислить полученный определенный интеграл. Для этого мы можем использовать формулу Ньютона-Лейбница. Первообразную для формулы Ньютона-Лейбница мы можем с помощью рекуррентной формулы вида Kn(x)=sin x·cosn-1(x)n+n-1nKn-2(x), где Kn(x)=cosn(x)dx.

cos6φdφ=sin φ·cos5φ6+56cos4φdφ==sin φ·cos5φ6+56sin φ·cos3φ4+34cos2φdφ==sin φ·cos5φ6+5sin φ·cos3φ24+1524sin φ·cos φ2+12cos0φdφ==π23π2cos6φdφ=sin φ·cos5φ6+5sin φ·cos3φ24+15sin φ·cos φ48+15φ48π23π2==1548·3π2-1548·π2=5π16

Таким образом, искомая площадь фигуры, ограниченной линией в полярной системе координат, равна S(G)=92π23π2cos6φdφ=92·5π16=45π32.

Ответ: S(G)=45π32

В тех случаях, когда в полярной системе координат задается множество кривых, которые по форме напоминают листья клевера или цветка, площадь фигур, ограниченных этими кривыми, часто одинаковы. В этих случаях можно вычислить площадь одного «лепестка» и умножить ее на количество криволинейных фигур.

Пример 3

Необходимо вычислить площадь плоской фигуры в полярной системе координат, которая ограничена линией r=3·cos(3φ).

Решение

Найдем область определения, исходя из того, что эта функция неотрицательна для любого φ из области определения.

cos(3φ)0-π2+2πk3φπ2+2πk, kZ-π6+2π3kφπ6+2π3k, kZ

Таким образом, период функции r=3·cos3φ равен 2π3. Это значит, что фигура состоит из трех областей одинаковой площади.

Построим фигуру на графике.

Примеры вычисления площади криволинейного сектора

Вычислим площадь одного участка, расположенного на интервале φπ2; 5π6(при k=1):

12π25π69cos(3φ)dφ=12·3sin(3φ)π25π6=32sin3·5π6-sin3·π2=32(1-(-1)=3

Ответ: Площадь всей фигуры будет равна площади найденного участка, умноженной на 3.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Аналогичным образом можно найти площади фигур, имеющих сходное строение. Примером может служить лемниската Бернулли.

Площадь фигуры, которую ограничивает лемниската Бернулли

Определение 4

Лемниската Бернулли задается уравнением r=α·cos2φ где a – положительное число, влияющее на размер линии (но не на конфигурацию, схожую с символом бесконечности). Лемниската Бернулли строится при -π4+π·kφπ4+π·k, kZ.

Площадь фигуры, которую ограничивает лемниската Бернулли

Лемниската служит границей фигуры, которую можно представить как два равных по площади участка.

Для вычисления площади используем нужную формулу:

S(G)=2·12-π4π4a2cos(2φ)2φ=a22(sin(2φ))-π4π4==a22sin2·π4-sin2·-π4=a2

Получается, что площадь фигуры, которую ограничивает лемниската Бернулли, равна квадрату коэффициента a.

Площадь фигуры, границей которой является кардиоида

В полярной системе координат кардиоида задается уравнением вида r=2a(1+cosφ). В этом уравнении a – некоторое положительное число. Задающая кардиоиду функция является периодической с периодом 2π. Она определена для всех действительных значений угла. Это значит, что для вычисления площади нижним пределом интегрирования мы будем считать любое число,  а верхним, то, которое на 2π больше нижнего.

Площадь фигуры, границей которой является кардиоида

Вычислим площадь фигуры, ограниченной кардиоидой r=2a(1+cosφ), для φ0; 2π:

S(G)=1202π(2a(1+cosφ))2dφ=2a202π(1+2cosφ+cos2φ)dφ==2a202π1+2cosφ+1+cos2φ2dφ==2a202π32+2cosφ+cos(2φ)2dφ==2a232φ+2sin φ+14sin2φ02π=6π·a2

Площадь фигуры, которую ограничивает улитка Паскаля

В полярной системе координат улитка Паскаля может быть задана уравнением r=b+2a·cosφ. В этом уравнении a – это некоторое положительное число, b – любое действительное число. Кардиоиду можно рассматривать как частный случай улитки Паскаля. Получить кардиоиду можно при  b=2a.

Улитка Паскаля в зависимости от значений параметров a и b может принимать различный вид. В данном разделе мы рассмотрим случаи, когда  функцию r неотрицательная.

При b<-2a функция r=b+2a·cosφ будет отрицательной для любого значения угла φ.

При b=-2a улитка Паскаля имеет вид точки, которая совпадает с полюсом.

При -2a< b< 0 функция r=b+2a·cosφ неотрицательна для φ-arccos-b2a+2πk; arccos-b2a+2πk, kZ.

Площадь фигуры, которую ограничивает улитка Паскаля

При 0<b<2a функция r=b+2a·cosφ неотрицательна для φ-arccos-b2a+2πk; arccos-b2a+2πk, kZ. Она ограничивает фигуру, которая по конфигурации напоминает кардиоиду.

Площадь фигуры, которую ограничивает улитка Паскаля

При b>2a функция r=b+2a·cosφ является неотрицательной для любого значения угла. Графическая иллюстрация этого случая приведена ниже

Площадь фигуры, которую ограничивает улитка Паскаля

Для того, чтобы правильно определить пределы интегрирования, необходимо учитывать соотношение параметров a и b.

Пример 4

Необходимы вычислить площадь фигуры, которая ограничена линиями, заданными уравнениями r=-3+6cosφ и r=5+4cosφ в полярной системе координат.

Решение

Формула r=-3+6cosφ соответствует фигуре, известной как улитка Паскаля..

Функция r=-3+6cosφ определена для всех значений угла φ. Нам необходимо выяснить, при каких φ функция будет неотрицательной:

-3+6cosφ0cosφ12-π3+2πkφπ3+2πk, kZ

Проведем вычисление площади фигуры, которая ограничена данной улиткой Паскаля: 

S(G)=12-π3π3(-3+6cosφ)2dφ=92-π3π3(1-4cosφ+4cos2φ)dφ==92-π3π31-4cosφ+4·1+cos2φ2dφ==92-π3π3(3-4cosφ+2cos(2φ))dφ=92·3φ-4sinφ+sin(2φ-π3π3==92·3·π3-4sinπ3+sin2π3-3·-π3-4sin-π3+sin-2π3==92·2π-33

Улитка Паскаля, определяемая формулой r=5+4cosφ, соответствует пятому пункту. Функция r=5+4cosφ определена и положительна для всех действительных значений φ. Поэтому, площадь фигуры в этом случае равна:

S(G)=1202π(5+4cosφ)2dφ=1202π(25+40cosφ+16cos2φ)dφ==1202π25+40cosφ+16·1+cos(2φ)2dφ==1202π(33+40cosφ+8cos(2φ))dφ=12·33φ+40sinφ+4sin(2φ02π==12·33·2π+40sin(2π+4sin(4π)-33·0+40sin 0+4sin 0=33π

Ответ: S(G)=33π

Площадь фигур, границей которых является спираль Архимеда или логарифмическая спираль

Сразу обратимся к примеру.

Пример 5

Необходимо вычислить площадь фигур в полярной системе координат, первая из которых ограничена первым витком спирали Архимеда r=αφ, α>0, а вторая первым витком логарифмической спирали r=αφ, α>1.

Решение

Если в задаче сказано, что фигура ограничена первым витком спирали Архимеда, то угол φ изменяется от нуля до двух пи.

Площадь фигур, границей которых является спираль Архимеда или логарифмическая спираль

Исходя из этого, найдем площадь фигуры по формуле:

S(G)=1202π(αφ)2dϕ=α2202πφ2dφ=α22·φ3302π=4α3π33

Аналогично вычисляется площадь фигуры, ограниченной первым витком логарифмической спирали:

S(G)=1202π(αϕ)2dϕ=1202πa2φdφ=14ln a·a2φ02π==14ln a·a4π-1

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

Пусть фигура в полярной системе координат ограничена лучами φ=α, φ=β и непрерывными и неотрицательными на интервале φα; β функциями r=p1(φ) и r=p2(φ), причем p1(φ)p2(φ) для любого угла φ=φ0α; β.

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

Находим площадь фигуры по формуле S(G)=12αβp22(φ)-p12(φ)dφ.

Действительно, в силу свойства аддитивности площади, фигуру G можно представить как разность двух криволинейных секторов G2 и G1.

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

Тогда площадь фигуры G равна разности площадей этих криволинейных секторов:

S(G)=S(G2)-S(G1)=12αβp22(φ)dφ-12αβp12(φ)dφ==12αβp22(φ)-p12(φ)dφ

Последний переход возможен в силу третьего свойства определенного интеграла.

Пример 6

Необходимо вычислить площадь фигуры, которая ограничена линиями φ=0, φ=π3, r=32, r=12φв полярной системе координат.

Решение

Построим заданную фигуру на графике.

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

Очевидно, что r=32 больше r=12φ для любого φ0; π3. Применяем полученную формулу для вычисления площади фигуры:

S(G)=120π3322-12φ2dφ=120π394-2-2φdφ==12·94φ+12·2-2φln 20π3=12·94φ+1ln 2·122φ+10π3==12·94·π3+1ln 2·122·π3+1-94·0+1ln 2·122·0+1==12·3π4+2-2π3-12·ln 2

Ответ: S(G)=12·3π4+2-2π3-12·ln 2

А теперь рассмотрим пример, когда фигура ограничена линиями, заданными в прямоугольной системе координат. Площадь такой фигуры намного проще вычислять, используя полярные координаты.

Пример 7

Необходимо вычислить площадь фигуры, которая ограничена прямыми линиями y=13x, x=3x, окружностями (x-2)2+(y-3)2=13, (x-4)2+(y-3)2=25.

Решение

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

В прямоугольной системе координат вычислить площадь полученной фигуры можно, но дело это долгое и хлопотное. Намного проще перейти к полярной системе координат, воспользовавшись формулами перехода.

x=r·cosφy=r·sinφy=13xr·sinφ=r·cosφ3tgφ=13φ=π6+πky=3xr·sinφ=3·r·cosφtgφ=3φ=π3+πk(x-2)2+(y-3)2=13x2+y2=4x+6yr=4cosφ+6sinφ(x-4)2+(y-3)2=25x2+y2=8x+6yr=8cosφ+6sinφ

Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов

Функция r=8cosφ+6sinφ больше r=4cosφ+6sinφ для любого φπ6; π3. Вычисляем площадь фигуры в полярных координатах:

S(G)=12π6π38cosφ+6sinφ2-4cosφ+6sinφ2dφ==12π6π3(48cos2φ+48cosφ·sinφ)dφ==24π6π3cos2φdφ+24π6π3cosφ·sinφdφ==12π6π3(1+cos2φ)dφ+24π6π3sinφd(sinφ)==12·φ+12sin(2φ)π6π3+12·sin2φπ6π3==12·π3+12sin2π3-π6+12sin2π6+12·sin2π3-sin2π6==12·π6+12·322-122=2π+6

Ответ: S(G)=2π+6

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!