Статью подготовили специалисты образовательного сервиса Zaochnik.

Системы дифференциальных уравнений

Содержание:

Этот раздел мы решили посвятить решению систем дифференциальных уравнений простейшего вида dxdt=a1x+b1y+c1dydt=a2x+b2y+c2, в которых a1, b1, c1, a2, b2, c2 - некоторые действительные числа. Наиболее эффективным для решения таких систем уравнений является метод интегрирования. Также рассмотрим решение примера по теме.

Решением системы дифференциальных уравнений будет являться пара функций x(t) и y(t), которая способна обратить в тождество оба уравнения системы.

Рассмотрим метод интегрирования системы ДУ dxdt=a1x+b1y+c1dydt=a2x+b2y+c2. Выразим х из 2-го уравнения системы для того, чтобы исключить неизвестную функцию x(t) из 1-го уравнения:

dydt=a2x+b2y+c2x=1a2dydt-b2y-c2

Выполним дифференцирование 2-го уравнения по t и разрешим его уравнение относительно dxdt:

d2ydt2=a2dxdt+b2dydtdxdt=1a2d2ydt2-b2dydt

Теперь подставим результат предыдущих вычислений в 1-е уравнение системы:

dxdt=a1x+b1y+c11a2d2ydt2-b2dydt=a1a2dydt-b2y-c2+b1y+c1d2ydt2-(a1+b2)·dydt+(a1·b2-a2·b1)·y=a2·c1-a1·c2

Так мы исключили неизвестную функцию x(t) и получили линейное неоднородное ДУ 2-го порядка с постоянными коэффициентами. Найдем решение этого уравнения y(t) и подставим его во 2-е уравнение системы. Найдем x(t). Будем считать, что на этом решение системы уравнений будет закончено.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Пример 1

Найдите решение системы дифференциальных уравнений dxdt=x-1dydt=x+2y-3

Решение

Начнем с первого уравнения системы. Разрешим его относительно x:

x=dydt-2y+3

Теперь выполним дифференцирование 2-го уравнения системы, после чего разрешим его относительно dxdt: d2ydt2=dxdt+2dydtdxdt=d2ydt2-2dydt

Полученный в ходе вычислений результат мы можем подставить в 1-е уравнение системы ДУ:

dxdt=x-1d2ydt2-2dydt=dydt-2y+3-1d2ydt2-3dydt+2y=2

В результате преобразований мы получили линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами d2ydt2-3dydt+2y=2. Если мы найдем его общее решение, то получим функцию y(t).

Общее решение соответствующего ЛОДУ y0 мы можем найти путем вычислений корней характеристического уравнения k2-3k+2=0:

D=32-4·2=1k1=3-12=1k2=3+12=2

Корни, которые мы получили, являются действительными и различными. В связи с этим общее решение ЛОДУ будет иметь вид y0=C1·et+C2·e2t.

Теперь найдем частное решение линейного неоднородного ДУ y~:

d2ydt2-3dydt+2y=2

Правая часть записи уравнения представляет собой многочлен нулевой степени. Это значит, что частное решение будем искать в виде y~=A, где А – это неопределенный коэффициент.

Определить неопределенный коэффициент мы можем из равенства d2y~dt2-3dy~dt+2y~=2:
d2(A)dt2-3d(A)dt+2A=22A=2A=1

Таким образом, y~=1 и y(t)=y0+y~=C1·et+C2·e2t+1. Одну неизвестную функцию мы нашли.

Теперь подставим найденную функцию во 2-е уравнение системы ДУ и разрешим новое уравнение относительно x(t):
d(C1·et+C2·e2t+1)dt=x+2·(C1·et+C2·e2t+1)-3C1·et+2C2·e2t=x+2C1·et+2C2·e2t-1x=-C1·et+1

Так мы вычислили вторую неизвестную функцию x(t)=-C1·et+1.

Ответ: x(t)=-C1·et+1y(t)=C1·et+C2·e2t+1

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!