Статью подготовили специалисты образовательного сервиса Zaochnik.

Классификация элементарных функций

Содержание:

Выделяют множество видов элементарных функций, каждый из которых обладает собственным набором свойств. Так, одни можно дифференцировать на определенном промежутке бесконечное число раз, другие являются непрерывными, ортогональными и др. В этой статье мы расскажем об общепринятой классификации элементарных функций.

Что такое элементарные функции

Начнем с базового определения.

Определение 1

Элементарные функции – это такие функции, которые получаются из основных функций с помощью сложения, вычитания, умножения и деления, а также посредством преобразования сложных функций.

Пример 1

Пример элементарной функции – y=arcsin2xx2-3+1-ln(x).

Таким функции бывают:

  • алгебраическими;
  • трансцендентными.

В свою очередь алгебраические функции можно разделить на иррациональные и рациональные (целые рациональные и дробные рациональные).

Рассмотрим каждый вид функций отдельно.

Понятие алгебраических функций

Определение 2

Алгебраические функции – это функции, которые состоят из цифр и букв, соединяющихся друг с другом при помощи знаков сложения, вычитания, умножения, деления, извлечения корня и возведения в целую степень.

Иными словами, это те функции, которые можно получить из основных функций f(x)=x и f(x)=1 и любых чисел, проведя с ними необходимые алгебраические действия (вычитание, умножение, сложение, деление и др.)

Пример 2

Так, примером алгебраической функции является y=x2-34x.

Выделяют рациональные и иррациональные алгебраические функции.

Определение 3

Рациональные функции – это те, в которых аргумент не находится под знаком корня (радикала). Они в свою очередь делятся на целые рациональные (т.е. многочлены) и дробные рациональные (выражения, составленные из многочленов).

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Пример 3

Примером первого вида функций является y=12x4+x-1, второго – y=x-ax3+b.

Важно отметить, что в рациональных функциях могут присутствовать иррациональные коэффициенты. Основное условие –– отсутствие аргумента функции под знаком радикала. Так, y=13x2-1 относится не к иррациональным, а к целым рациональным функциям.

Определение 4

Иррациональные функции – это те, которые содержат в себе аргумент под знаком корня (радикала).

Пример 4

Примером такой функции может быть y=x+13.

Понятие трансцендентных функций

Прочие функции, которые нельзя отнести к алгебраическим, относятся к виду трансцендентных.

Определение 5

Трансцендентные функции – это те, которые образуются при помощи логарифмирования, возведения в иррациональную степень или с помощью тригонометрических и обратных тригонометрических преобразований.

Пример 6

Пример такой функции – y=log2x3+23.

При определении вида функции нужно учитывать один важный момент. Если исходная функция может быть упрощена, то определять вид мы будем уже у полученной в итоге преобразований, а не у исходной функции. Так, y=x3+3x2+3x+13 не относится к иррациональным функциям, поскольку при упрощении она становится рациональной y=x3+3x2+3x+13=x+1323=(x+1)2=x2+2x+1 .Функция y=arcsin(sin(3x2+1) является рационально алгебраической, а не трансцендентной, поскольку y=arcsin(sin(3x2+1)=3x2+1.

Навигация по статьям

Не получается написать работу самому?

Доверь это кандидату наук!