Автор статьи

Статью подготовили специалисты образовательного сервиса Zaochnik.

Ферромагнетики и доменная структура

Содержание:

В статье ниже рассмотрим такой вид магнетиков как ферромагнетики. Разберём их основные свойства и доменную структуру.

Определение 1

Ферромагнетики – это особый класс магнетиков, способных обладать намагниченностью при отсутствии внешнего магнитного поля (спонтанная намагниченность).

Основные свойства ферромагнетиков

Отметим, что ферромагнетизм присущ веществам лишь в кристаллическом состоянии. Самыми известными примерами ферромагнетиков являются: железо, кобальт, соединения хрома и другие. Ферромагнетики относятся к сильномагнитным веществам, при этом их намагниченность находится в зависимости от напряженности внешнего поля нелинейно и достигает насыщения. Учитывая сказанное, магнитная восприимчивость (χ) и магнитная проницаемость (μ) для ферромагнетиков непостоянны. Так же имеет место запись:

J=χH и B=μμ0H,

но при этом μ и χ рассматриваются как функции от напряженности поля. С ростом напряжённости поля данные функции также получают рост, проходят через максимум, а в сильном поле (при достижении насыщения) μ стремится к единице, а χ – к нулю. Значение μ в максимуме достигает сотни тысяч единиц для большинства ферромагнетиков в условиях обычной температуры.

Монокристаллы ферромагнетиков являются анизотропными по отношению к магнитным свойствам. Каждый монокристалл содержит одно или несколько направлений, вдоль которых магнитная восприимчивость особо значима. Также имеются направления, в которых кристалл плохо намагничивается. Заметим, что, если вещество, являющееся ферромагнетиком, состоит малых поликристаллов, то оно является изотропным.

Рассмотрим еще одну отличительную черту ферромагнетиков: зависимости B H и JH являются неоднозначными, определенными предшествующей историей – для ферромагнетиков характерен магнитный гистерезис.

Определение 2

Для рассматриваемого класса магнетиков имеет место определенная температура, при которой вещество осуществляет фазовый переход второго рода. Такая температура носит название температуры Кюри (Tk) или иначе: точки Кюри.

Когда значение температуры ниже точки Кюри, вещество проявляется как ферромагнетик; когда температура становится выше точки Кюри, вещество приобретает свойства парамагнетика. Вокруг точки Кюри магнитная восприимчивость ϰ отвечает закону Кюри-Вейса:

χ=CT-Tk.

Доменная структура ферромагнетиков

Эйнштейн в ходе эксперимента показал, что ферромагнетизм вызывается спинами электронов. Как уже указывалось выше, ферромагнетики обладают спонтанной намагниченностью при отсутствии внешнего поля, но под влиянием внутренних причин спины электронов начинают выстраиваться в одном общем направлении. При этом стоит отметить, что энергетически не оптимально для ферромагнетика целиком обладать намагниченностью.

Впервые теорию о свойствах ферромагнетиков сформулировал Вейсс в 1907 году. Поверхностный взгляд может отметить, что в данной теории существует противоречие между спонтанным намагничиванием и фактом, что даже, когда значение температуры ниже точки Кюри, некоторые ферромагнетики не намагничены, хоть и имеются постоянные магниты. Данное противоречие было устранено сформулированной Вейссом гипотезой.

Определение 3

Ферромагнетики при температуре ниже точки Кюри в магнитном отношении распадаются на множество маленьких макроскопических областей, и каждая из них является спонтанно намагниченной. Эти области получили название доменов.

Домены направлены хаотично при обычных условиях. Тело в общем не является намагниченным. Включение внешнего поля вызывает рост доменов, имеющих ориентацию по полю, за счет доменов, имеющих ориентацию против поля; происходит смещение доменных границ. Если поле слабое, подобное смещение является обратимым. Если поле сильное, домены изменяют ориентацию в пределах всего домена; процесс приобретает необратимый характер, появляется явление гистерезиса и остаточное намагничивание.

Подобный доменный «распад» энергетически выгоден. Когда ферромагнетик дробится на домены, и появляются домены различной ориентации, наблюдается ослабление магнитного поля, порождаемого ферромагнетиком; сопутствующая энергия становится меньше. Энергия обменного взаимодействия электронов не изменяется для всех электронов за исключением электронов на границах доменов (так называемая поверхностная энергия). Ее рост обусловлен различной ориентацией спинов электронов соседних доменов. Дробление доменов получает окончание при достижении минимума суммы магнитной и обменной энергии. Условием минимума определяется также размер доменов. Доменная структура ферромагнетиков имеет эмпирическое доказательство.

Границы доменов

Резюмируя вышесказанное: чтобы минимизировать энергию магнитного поля, оптимально создать условия для уменьшения размера домена. При этом имеется препятствие, выраженное неизбежностью энергетических затрат на образование границ между доменами, поскольку намагниченность по разные стороны границы обладает разной направленностью. Граница имеет определенную толщину, в ее пределах намагниченность постепенно изменяет свое направление от ориентации в одном домене к ориентации в соседнем.

Стенки доменов имеют классификацию по особенностям поворота вектора намагниченности:

  • когда перпендикулярная (относительно стенки) составляющая вектора намагниченности в процессе поворота неизменна, то речь идет о стенке Блоха (в стенке Блоха вращение происходит в плоскости, параллельной стенке);
  • когда изменение направления вектора намагниченности происходит с изменением перпендикулярной составляющей, речь идет о стенке Нееля.
Пример 1

Рисунок 1 демонстрирует идеализированные структуры доменов в монокристалле. При помощи стрелок обозначены направления намагниченности.

Границы доменов

Рисунок 1

Пример 2

Необходимо определить, какое свойство дает возможность использовать ферромагнетики для создания сильных полей.

Решение

Поскольку зависимость BH является нелинейной, магнитная проницаемость μ=Bμ0H имеет зависимость от напряженности поля. Кривая зависимости µ(Н) получает рост совместно с увеличением поля от некоторого изначального значения до определенного µmax, после чего магнитная проницаемость снижается до единицы.

Указанная отличительная черта намагничивания ферромагнетиков объясняет эффективное использование этих материалов для создания сильных магнитных полей в области, далекой до насыщения. В сильных полях наступает насыщение, и применение ферромагнетиков практически бесполезно.

Навигация по статьям

Выполненные работы по физике
  • Физика

    Кипение Гигиеническое значение влажности в медицине

    • Вид работы:

      Доклад

    • Выполнена:

      17 февраля 2024 г.

    • Стоимость:

      1 000 руб

    Заказать такую же работу
  • Физика

    I ИНФОРМАЦИОННОАНАЛИТИЧЕСКАЯ СПРАВКА ПРЕПОДАВАТЕЛЯ СПО

    • Вид работы:

      Аналитическая справка

    • Выполнена:

      10 февраля 2024 г.

    • Стоимость:

      1 400 руб

    Заказать такую же работу
  • Физика

    Равноускоренное движение

    • Вид работы:

      НИР (научно-исследовательская работа)

    • Выполнена:

      9 февраля 2024 г.

    • Стоимость:

      4 700 руб

    Заказать такую же работу
  • Физика

    Механические волны акустические волны Продольные и поперечные волны Фронт волны луч Уравнение плоской волны Волновой вектор Вектор УмоваПойнтинга Принцип суперпозиции волн Когерентность волн Стоячие волны

    • Вид работы:

      Доклад

    • Выполнена:

      26 января 2024 г.

    • Стоимость:

      800 руб

    Заказать такую же работу
  • Физика

    физика в футболе

    • Вид работы:

      Школьный проект

    • Выполнена:

      24 января 2024 г.

    • Стоимость:

      2 900 руб

    Заказать такую же работу
  • Физика

    Давление на дне океана

    • Вид работы:

      Доклад

    • Выполнена:

      20 января 2024 г.

    • Стоимость:

      1 400 руб

    Заказать такую же работу